Cellulose insulating

Advantages of cellulose insulation

Thermal performance

The thermal performance of loose filled cellulose compares favorably to other types of insulation. The thermal conductivity of loose-fill cellulose is approximately 40 mW/m·K (an R-value of 3.8 per inch) which is about the same as or slightly better than glass wool or rock wool. This doesn’t represent the whole picture of thermal performance. Other important aspects are how well the building envelope is sealed from air infiltration, convective airflows, and thermal bridging.

Cellulose is very good at fitting around items in walls like pipes and wiring, leaving few air pockets that can reduce the overall efficiency of the wall. Dense pack cellulose can seal walls from air infiltration while providing the density to limit convection, when installed properly. The University of Colorado School of Architecture and Planning did a study that compared two seemingly identical test structures, one with cellulose and the other with fiberglass. The cellulose structure had used 26.4% less energy to heat. It also was shown to tighten the structure more than 30%. Subsequent real world surveys have cellulose performing 20-30% better at reducing energy used for heating than fiberglass.

Compared to foam insulation, cellulose has a lower R-value per inch, but is much less expensive; foam has a higher cost per equivalent R-value.

Long-term cost savings

Cellulose’s insulation qualities “can save homeowners 20 to 50 percent on their utility bills”.

Sound insulation

Noise reduction is achieved in three ways with cellulose. The first is that cellulose completely fills cavities leaving few air pockets for sound to travel in. The second is the cellulose material’s ability to trap air. The significant difference between noise reduction with cellulose and fiberglass is its density. Cellulose is approximately three times denser then fiberglass. This helps deaden the sound through walls and between floor levels.

Several installation options allow walls to have a Sound Transmission Class (STC) of 50 or greater. As a comparison, walls with fiberglass batts have an STC of 36-39, depending on stud and screw spacing.

Mold control

The borates in cellulose insulation provide superior control against mold. Installations have shown that even several months of water-saturation and improper installation did not result in mold.

Fire retardation

The borate treatment also gives cellulose the highest (Class I) fire safety rating. Many cellulose companies use a blend of ammonium sulfate and borate.

Vapor barrier

A vapor barrier may not be needed with cellulose insulation. For example, recent studies have shown that air movement is the primary method by which excessive moisture can accumulate in mild marine climates. An insulation that fills the wall cavity completely (such as cellulose or foam) can help prevent moisture problems. Recommendations against using vapor barriers with cellulose insulation are supported by studies, even though they classify cellulose as vapor permeable.

In addition, cellulose acts to distribute moisture throughout the cavity, preventing the buildup of moisture in one area and helping to dry the moisture more quickly. Cellulose manufacturers do not recommend the installation of a vapor barrier with cellulose.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Licensed with the State of Alaska